Show simple item record

dc.contributor.authorRatner, Marciaen_US
dc.contributor.authorFarb, Daviden_US
dc.date.accessioned2022-08-24T13:13:32Z
dc.date.available2022-08-24T13:13:32Z
dc.date.issued2022-04-22
dc.identifier.urihttps://hdl.handle.net/2144/45028
dc.description.abstractAdverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.en_US
dc.language.isoen_US
dc.publisherFrontiersen_US
dc.rightsCopyright © 2022 Ratner and Farb. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBehavioral testingen_US
dc.subjectIn vivo electrophysiologyen_US
dc.subjectLocal field potential (LFP)en_US
dc.subjectNeural networken_US
dc.subjectPlace cell recordingsen_US
dc.titleProbing the neural circuitry targets of neurotoxicants in vivo through high density silicon probe brain implantsen_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.3389/ftox.2022.836427


This item appears in the following Collection(s)

Show simple item record

Copyright © 2022 Ratner and Farb. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as Copyright © 2022 Ratner and Farb. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.